Matematika juga punya peluangloh

Peluang dalam Matematika

Apakah kalian pernah bermain ular tangga? Di dalam permainan ular tangga tentu kalian akan menggunakan dadu untuk menentukan jumlah langkah yang harus kalian ambil. Pada proses pelemparan dadu, hasil atau angka yang mungkin muncul adalah 1,2,3,4,5, atau 6. Nah kemungkinan munculnya angka pada saat melempar dadu adalah salah satu contoh Peluang Matematika.
               Contoh lain dari peluang matematika adalah pelemparan koin. Pada saat melempar koin ada dua buah kemungkinan sisi yang muncul. Sisi yang pertama adalah angka (A) dan sisi yang kedua adalah gambar (A). Nah, pada materi kali ini, akan memberikan rangkuman materi mengenai pengertian dan rumus peluang dalam matematika.  Mari kita simak rangkuman materinya sebagai berikut:
               Memahami Definisi dan Rumus Peluang dalam Matematika
Definisi Peluang
Peluang dapat didefinisikan sebagai sebuah cara yang dilakukan untuk mengetahui kemungkinan terjadinya sebuah peristiwa. Di dalam materi mengenai peluang, dikenal beberapa istilah yang sering digunakan, seperti:
Ruang Sampel
Ruang sampe ini Merupakan himpunan dari semua hasil percobaan yang mungkin terjadi.
Titik Sampel
Titik Sampel merupakan anggota yang ada di dalam ruang sampel
Kejadian
Kejadian merupakan himpunan bagian dari ruang
                Peluang Suatu Kejadian

1. Peluang Suatu Kejadian

Sebelum mempelajari peluang suatu kejadian, marilah kita ingat kembali mengenai ruang sampel yang biasanya dilambangkan dengan S. Kejadian adalah himpunan bagian dari ruang sampel, sedangkan titik sampel adalah setiap hasil yang mungkin terjadi pada suatu percobaan. Jika A adalah suatu kejadian yang terjadi pada suatu percobaan dengan ruang sampel S, di mana setiap titik sampelnya mempunyai kemungkinan sama untuk muncul, maka peluang dari suatu kejadian A ditulis sebagai berikut.

             n(A)
P(A) = ———
             n(S )

Keterangan:
P(A) = peluang kejadian A
n(A) = banyaknya anggota A
n(S) = banyaknya anggota ruang sampel S

Contoh :
Pada pelemparan 3 buah uang sekaligus, tentukan peluang muncul:
a. ketiganya sisi gambar;
b. satu gambar dan dua angka.

Penyelesaian:
a. S = {AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG}
    Maka n(S) = 8
    Misal kejadian ketiganya sisi gambar adalah A.
    A = {GGG}, maka n(A) = 1
                  n(A)        1
    P(A) =  ——— =——
                  n(S )       8
b. Misal kejadian satu gambar dan dua angka adalah B.
     B = {AAG, AGA, GAA}, maka n(B) = 3
                  n(B)        3
    P(B) =  ——— =——
                  n(S )       8

0 Comments:

Posting Komentar